An Efficient C−**H Oxidation Protocol for** r**-Hydroxylation of Cyclic Steroidal Ethers**

ORGANIC LETTERS 2004 Vol. 6, No. 9 ¹⁴³⁷-**¹⁴⁴⁰**

Seongmin Lee and Philip L. Fuchs*

Department of Chemistry, Purdue University, West Lafayette, Indiana 47907 pfuchs@purdue.edu

Received February 17, 2004

ABSTRACT

Various C-16 hydroxy steroids have been prepared with the aid of CrO₃/Bu₄NIO₄. Out of the two possible reaction courses, transition state B **is favored because of less steric interference between substrate and CrO4. Thus, C**−**H bonds at C-16 are oxidized selectively.**

The availability of efficient synthetic methods for the α -hydroxylation of cyclic ethers has been of considerable interest in organic chemistry. Many oxidations mediated by transition-metal complexes and organic oxidants have been investigated. For example, dioxiranes including $DMDO¹$ and $TFMDO₁²$ and transition-metal complexes such as manganese,³ copper,⁴ vanadium,⁵ iron,⁶ cobalt,⁷ and ruthenium,⁸

(3) (a) MacDonnell, F. M.; Fackler, N. L. P.; Stern, C.; O'Halloran, T. V*. J. Am. Chem. Soc.* **1994**, *116*, 7431. (b) Miyafuji, A.; Katsuki, T. *Tetrahedron* **1998**, *54*, 10339. (c) Miyafuji, A. *Synlett* **1997**, *7*, 836.

(4) Zhang, C.; Liang, H.; Kim, E.; Shearer, J.; Helton, M.; Kim, E.; Kaderli, S.; Incarvito, C.; Karlin, K. D. *J. Am. Chem. Soc*. **2003**, *125*, 634.

(5) Kelm, H.; Kruger, H. *Angew. Chem., Int. Ed*. **2001**, *40*, 2344. (6) LeCloux, D.; Barrios, A. M.; Lippard, S. J. *Bioorg. Med. Chem*. **1999**, *7*, 763.

10.1021/ol049712a CCC: \$27.50 © 2004 American Chemical Society **Published on Web 03/30/2004**

have achieved various levels of success. While chemical and biochemical hydroxylations⁹ often proceed with high stereoand regioselectivity, chemoselective α -hydroxylation of cyclic ethers remains an open question.

In our efforts to synthesize structurally complex and biologically hyperactive cephalostatin $1,10$ we envisioned C-H oxidation α to cyclic ethers as an important valueadded operation with regard to improved access to the north unit of cephalostatin 1 (Scheme 1).

Recently, we reported oxidation of both activated and nonactivated C-H bonds under the catalytic influence of Cr^{VI} .¹¹ Catalytic chromoyl diacetate,¹² together with $H₅IO₆$,¹³ was found to produce a powerful C-H oxidant. Herein, we discuss the subject of regio-, stereo-, and chemoselective α -hydroxylation of steroidal cyclic ethers related to the cephalostatin targets. Our initial survey revealed that some

[†] Cephalostatin Support Studies. 30. Oxidation 5. For part 29, see: Wei, Li.; Fuchs, P. L*. Org. Lett*. **2003**, *5*, 4061.

⁽¹⁾ Dimethyldioxirane: (a) Arnone, A.; Cavicchioli, M.; Montanari, V.; Resnati, G. *J. Org*. *Chem*. **1994**, *59*, 5511. (b) Bovicelli, P.; Lupattelli, P.; Fracassi, D. *Tetrahedron Lett*. **1994**, *35*, 935. (c) Bovicelli, P.; Lupattelli, P.; Fracassi, D. *Tetrahedron Lett*. **1993**, *34*, 6103. (d) Voigt, B.; Porzel, A.; Adam, W.; Adam, G. *Tetrahedron* **1996**, *52*, 10653.

⁽²⁾ Methyl(trifluoromethyl)dioxirane: Curci, R.; Accolti, L.; Fiorentino, M.; Fusco, C.; Adam, W. *Tetrahedron Lett.* **1992**, *33*, 4225.

⁽⁷⁾ Reetz, M. T.; Toellner, K. *Tetrahedron Lett.* **1995**, *36*, 9461.

^{(8) (}a) Che, C.; Ho, C.; Lau, T. *J. Chem. Soc., Dalton Trans*. **1991**, *5*, 1259. (b) Che, C.; Leung, W. *J. Chem. Soc., Chem. Commun*. **1987**, *18*, 1376.

⁽⁹⁾ Pellissier, H.; Santelli, M. *Org. Prep. Proc. Int*. **²⁰⁰¹**, *³³*, 1-58.

⁽¹⁰⁾ Pettit, G. R.; Tan, R.; Xu, J. P.; Ichihara, Y.; Williams, M. D.; Boyd,

M. R. *J. Nat. Prod*. **1998**, *61*, 953 and references therein. (11) Lee, S.; Fuchs, P. L. *J. Am. Chem. Soc*. **2002**, *124*, 13978 and references therein.

^{(12) (}a) Miayura, N.; Kochi, J. K. *J. Am. Chem. Soc*. **1983**, *105*, 2368. (b) Krauss, H. L. *Angew. Chem*. **1958**, *70*, 502. (c) Harris, A. D.; Trebellas, J. C.; Jonassen, H. B*. Inorg. Synth*. **1967**, *9*, 83. (d) Suggs, J. W.; Ytuarte, L. *Tetrahedron Lett*. **1986**, *27*, 437.

spiroketal substrates underwent decomposition or isomerization due to the strong acidity of $H₅IO₆$ required in the catalytic protocol. Therefore, stoichiometric oxidation conditions viz. ($CrO₃$ (3 equiv), Bu₄NIO₄ (3 equiv), MeCN/CH₂-Cl₂ (3:1, 0.1 M), -40 °C, 10 min)¹⁴ were employed in all the C-H oxidations.

We propose that a neutral dioxo, monoperoxo $CrO₄$ is generated *in situ* by the reaction of CrO₃ with Bu₄NIO₄. This species, which is structurally similar to dioxiranes,¹⁵ presumably serves as the active C-H oxidant (Scheme 2).

The attack of the periodate on Cr followed by loss of Bu₄-NIO3 produces the dioxoperoxy CrVI species. The generated

(13) (a) Fatiadi, A. J. *Synthesis* **1974**, 229. (b) Chaudhuri, B. K.; Mukherjee, H. G. *Indian Chem. Soc*. **1979**, *56*, 1098. (c) Rodriguez, C. M.; Ode, J. M.; Martin, V. S. *Tetrahedron* **1992**, *48*, 3571. (d) Xu, L.; Cheng, J.; Trudell, M. K. *J. Org. Chem*. **2003**, *68*, 5388. (e) Vondervoort, L. S.; Bouttemy, S.; Padron, J. M.; Muzart, J.; Alsters, P. L. *Synlett* **2002**, 243. (f) Kim, S. S.; Nehru, K*. Synlett* **2002**, 616. (g) Zhao, M.; Li, J.; Song, Z.; Desmond, R.; Tschaen, D. M.; Grabowski, E.; Reider, P. J. *Tetrahedron Lett.* **1998**, *39*, 5323.

(14) **General Procedure.** Anhydrous chromium trioxide (300 mg, 3 mmol) was finely ground in CH₃CN (5.0 mL) under a positive pressure of argon or nitrogen at ambient temperature. The chromium trioxide suspension was then cooled to -40 °C, and a CH₂Cl₂ (2.5 mL) solution of a substrate (1 mmol) was added in one portion, followed by dropwise addition of a CH₃CN (2.5 mL) solution of Bu₄NIO₄ (1.30 g, 3 mmol) for 10 min. The dark orange reaction mixture was quenched by addition of saturated aqueous Na₂SO₃, extracted with EtOAc, washed with water and brine, dried over Na₂SO₄, concentrated, and purified by silica gel column chromatography to give a hemiacetal.

(15) (a) Frohn, M.; Wang, Z.; Shi, Y. *J. Org. Chem*. **1998**, *63*, 6425. (b) Zhang, L.; Lay, P. A*. Inorg. Chem*. **1998**, *37*, 1729. (c) Firouzabadi, H.; Iranpoor, N.; Kiaeezadeh, F.; Toofan, J. *Tetrahedron* **1986**, *42*, 719. (d) Bakac, A.; Wang, W. D. *J. Am. Chem. Soc*. **1996**, *118*, 10325. (e) Valentin, C. D. Gisdakis, P.; Yudanov, I. V.; Rosch, N. *J. Org. Chem*. **2000**, *65*, 2996. (f) Shilov, A. E.; Shul'pin G. B. *Chem. Re*V. **¹⁹⁹⁷**, *⁹⁷*, 2879.

oxidant is stable at -40 °C for several hours and has an orange color typical of CrVI. A Cr peroxy stretch is observed at 945 cm^{-1} in the IR spectrum.

We first assessed the compatibility of the Cr^{VI} oxidant with various functional groups (Table 1). While acetate, benzoate,

Table 1. Regio-, Stereo-, and Chemoselective C-H Oxidation of Steroid Substrates

AcO		OR.	Ŷ	Y'	z CrO_3 (3eq) Bu_4NIO_4 (3eq) MeCN/MC (3:1) -40°C 10 min	mm	ķ ÓН	Y"
entry OR		X	Y	Y	Y"	Ζ		product yield $(\%)$
1		OAc OAc	⊱CH		⊱CH ₂	Н	1	84
\overline{c}		OBz OBz	\in CH ₂		\in CH ₂	OBz	2	75
3	OBz	H	CH ₂ OH	H	CO ₂ H	Н	3	78
4	OBz	H	CH ₂ OAc	Н	CH ₂ OAc	H	4	97
5		OAc OAc	CH ₂ OT _s	H	CH ₂ OT _s	H	5	88
6	OBz	Н	CH ₂ OTBS	H	CH ₂ OTBS	Н	6	33
7	OBz		H CH ₂ OTBDPS	H	CH ₂ OTBDPS H		7	86
8	OBz	Н	CH ₂ I	Н	CH ₂ I	H	8	72
9		OAc OAc	CH ₂ I	Н	CH ₂ I	H	9	73

olefin, iodide, TBDPS, and tosylate functionalities (entries 1, 2, 4, 5, and $7-9$ are stable to oxidation conditions, primary alcohol (entry 3) is rapidly converted to carboxylic acid along with formation of the C16-OH. The substrate bearing a TBS protecting group (entry 6) gave a low yield, due to its marginal stability under the acidic reaction conditions (pH 2). The TBDPS protected steroid (entry 7) gave substantially improved yield. Oxidation-susceptible olefin and iodide moieties (entry 1, 2, 8, and 9), which ultimately give epoxides under the influence of DMDO or *m*-CPBA, are inert under this oxidation condition, highlighting the chemoselectivity of the Cr-mediated C-H oxidation.

The value of this oxidation is its extremely mild conditions combined with exquisite selectivity. The observed retention of configuration strongly suggests that the C-H oxidation proceeds through a concerted "three center two electron" oxenoid insertion into C-H bonds rather than through radical intermediates.16

It has been suggested that $C-H$ bonds aligned with oxygen atoms bearing relatively small dihedral angles (H-C-Ononbonding electron pairs) enjoy pronounced stereoelectronic activation resulting in higher rates of hydrogen atom abstraction than other sites (Scheme 3).¹⁷

^{(16) (}a) Mello, R.; Fiorentino, M.; Fusco, C.; Curci, R. *J. Am. Chem. Soc*. **1989**, *111*, 6749. (b) Adam, W.; Asensio, G.; Curci, R*. J. Org. Chem*. **1992**, *57*, 953.

^{(17) (}a) Malatesta, V.; Scaiano, J. C. *J. Org. Chem.* **1982**, *47*, 1455. (b) Malatesta, V.; Ingold, K. U*. J. Am Chem. Soc*. **1981**, *103*, 609. (c) Deslongchamps, P. *Tetrahedron* **1975**, *31*, 2463. (d) Gregory, A. R.; Malatesta, V*. J. Org. Chem*. **1980**, *45*, 122.

Thus, positions at C16 and C22 are both considered preferred oxidation sites. Transition state **A** is disfavored due to the presence of severe steric interaction between the approaching CrO_4 and the α -C21 methyl and free rotating C23-27 alkyl side chain. Transition state **^B** offers a more accessible approach vector, so that the oxidation preferentially generates the C16 lactol.

The unusual chemoselectivity for C-H oxidation over epoxidation is in keeping with a theoretical study that CrVI peroxo species have higher calculated activation barriers for oxygen transfer to ethylene; they are less prone to epoxidation than similar Mo^{VI} and W^{VI} species.¹⁸

We next examined the effect of proximal C-14,15 substitution on the C16 oxidation (Table 2). Unlike the substrates

^a Isolated yield. *^b* Ratio determined by 1H NMR integration.

which possess dihydro C-14,15 (Table 1), the presence of oxirane, olefin, and dibromides (entries $10-12$) leads to E-ring opened products. The formation of **11a** can be viewed as sequential allylic oxidation, hydroxyl group directed α face epoxidation, and E-ring opening. *Substitution at C-15 with an electron-withdrawing acetate group (entry 13) dramatically changed the site of C*-*H oxidation.* With C-16 deactivated by the adjacent acetate group, C-H oxidation occurs at C-22 to provide hemiacetal **13a**. This result illustrates an important electronic effect on the regioselectivity of C-H oxidation. It is therefore likely that deactivation of C16 by the oxirane or dibromide moieties enables oxidations of **10** and **12** (Scheme 4) to initially take place at

C22. Sequential oxidation of the *ω*-hydroxyketone will then afford the E-ring-opened products **10a** and **12a**, respectively.

^C-H oxidation of other sized spiroketals (Table 3) was also studied. In the case of dibromide **14**, no reaction

a Reaction conditions: -40 to $+25$ °C, 2 h. *b* -10 °C, 1 h.

^{(18) (}a) Di Valentin, C.; Gisdakis, P.; Yudanov, I. V.; Rösch, N. *J. Org. Chem.* **²⁰⁰⁰**, *⁶⁵*, 2996. (b) Dickmann, M. H.; Pope, M. T. *Chem. Re*V. **¹⁹⁹⁴**, *94*, 569. (c) Amato, G.; Arcoria, A.; Ballistreri, F. P.; Tomaselli, G. A.; Bortolini, O.; Conte, V.; Di Furia, F.; Modena, G.; Valle, G. *J. Mol. Catal*. **1986**, *37*, 165. (d) Mimoun, H. *Angew. Chem., Int. Ed. Engl.* **1982**, *21*, 734. (e) Paquette, L. A.; Kobayashi, T. *Tetrahedron Lett*. **1987**, *28*, 3531. (f) Jorgensen, K. A. *Chem. Re*V*.* **¹⁹⁸⁹**, *⁸⁹*, 431. (g) Romao, C. C.; Kuhn, F. E. Herrmann, W. A. *Chem. Re*V. **¹⁹⁹⁷**, *⁹⁷*, 3197.

occurred, presumably because of the combined steric and electronic effect of bromine at C-15. Stoichiometric oxidation of saturated spiroketals **15** and **16** afforded the tertiary alcohols **15a** and **16a**, respectively. It is worth noting that the oxidation of **15** which posseses an oxirane moiety, requires higher reaction temperatures and a prolonged reaction time $(-10 \degree C, 1 \text{ h})$. Unlike the 5/5 spiroketals, oxidation of 5/6 spiroketal **17** results in the formation of the E-ring opened product **17b** together with the hemiacetal **17a**. The formation of **17b** is attributed to the presence of an irreversible alcohol oxidation step (**17d** to **17b** in Scheme 5) which serves to the opening of the 5-ring hemiacetal.

A 5/6 spiroketal **18** with a C-14 OH group is oxidized to give the corresponding hemiacetal **18b** along with 6/6 spiroketal **18a**. The structure of **18a** has been unambiguously determined by X-ray crystallography. Oxidation of **18b**, followed by acid-catalyzed transketalization, seems to be a reasonable rationale for the formation **18a**.

Unusual regioselectivities are observed in the case of bistetrahydrofuran **19** and menthol derivative **20** and **21** (Table 4). Out of many products possible (arrows shown for potential oxidation sites in Table 4), C16 hemiacetal **19a** and tertiary alcohol **20a** and **21a** are obtained as the major products. The sterically less hindered tertiary C-H bond of **20** has been oxidized preferentially over *secondary* benzylic position also adjacent to oxygen, the tertiary α position of the acyclic ether, and sterically more hindered tertiary $C-H$ bonds. Formation of ketone **21b** presumably results from hydroxyl directed production of a 1,2-diol from **21a**, followed by oxidative cleavage.

Lastly, we compared our protocol with the highly regarded ruthenium^{VIII}-catalyzed²⁰ tetrahydrofuran C-H oxidation (Table 5). A hemiacetal **22a** was formed in the presence of

 $RuO₂$ and $H₅IO₆$ in 74% yield after 2 h, while prolonged reaction afforded 17% of C16, 22-diketone **22b**, probably resulting from oxidation of the *ω*-hydroxyketones in equilibrium with the initially produced hemiacetals. In the case of CrVI-mediated oxidation, hemiacetal **22a** or diketone **22b** was selectively produced under milder reaction conditions.

In summary, the $Cr^{VI} C-H$ oxidant offers strong inducement to further understand the scope and limitations of this powerful and selective reagent.

Acknowledgment. This investigation was generously supported by funds provided by the National Institutes of Health (CA 60548). We acknowledge Arlene Rothwell and Karl Wood for providing MS data.

Supporting Information Available: General experimental procedure and NMR spectra for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹⁹⁾ X-ray data for compound **18a** are available from the Cambridge Crystallographic Database.

^{(20) (}a) Tenaglia, A.; Terranova, E.; Waegell, B. *J. Org. Chem*. **1992**, *57*, 5523. (b) Carlsen, P.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. *J. Org. Chem.* **1981**, *46*, 3936. (c) Scarborough, R. M.; Smith, A. B. *J. Am. Chem. Soc.* **1980**, *102*, 3904.